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SUMMARY 
A Newton’s method scheme is described for solving the system of non-linear algebraic equations arising when 
finite difference approximations are applied to the Navier-Stokes equations and their associated boundary 
conditions. The problem studied here is the steady, buoyancy-driven motion of a deformable bubble, 
assumed to  consist of an inviscid, incompressible gas. The linear Newton system is solved using both direct 
and iterative equation solvers. The numerical results are in excellent agreement with previous work, and the 
method achieves quadratic convergence. 
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INTRODUCTTON 

Recent advances in both computer hardware and numerical methods for free-boundary problems 
have contributed to a present state in which computational fluid dynamics can now play a 
significant role as a third fundamental investigative branch, with an essentially experimental 
flavour not based upon theoretical solutions of the problem. This approach can be used with 
particular advantage when it is desired to explore fundamental physical mechanisms via one-at-a- 
time variation of independent parameters, or when the length or time scales of resolution required 
are too small for conventional experimental measurement. One important class of problems that 
particularly fits this description is the dynamics of bubbles and drops, where experimental 
observation of shapes is often possible (though extreme measures may be required to achieve 
adequate resolution’) but details of the velocity or pressure fields are very difficult to obtain. 

There are basically two fundamental classes of problems, and there are two corresponding 
solution techniques. When creeping motion or potential flow approximations can be applied, so 
that the governing partial differential equations are linear and only the boundary conditions are 
non-linear (owing to the fact that the boundary shape is unknown), quite powerful numerical 
techniques have been developed, based upon the boundary integral formulation, for studying 
problems involving highly deformed, time-dependent bubbles or drops.*, ’ At intermediate 
Reynolds numbers, however, we must retain the complete Navier-Stokes equations, and free- 
boundary problems can only be solved via an adaptation of the numerical meth’ods developed for 
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finite Reynolds number flows. Much of this work has centred around finite element techniques, 
due, in part, to the belief of early investigators that finite difference techniques were only well 
suited to problems with fixed and simple boundary shapes coinciding with a co-ordinate line or 
surface in one of the known analytical co-ordinate systems. More recently, finite difference 
methods have enjoyed a resurgence of popularity for applications involving more complex 
boundary shapes, owing to the development of methods for numerical generation of boundary- 
fitted co-ordinate grids4 Evidentally, these methods should also be applicable for free-boundary 
problems, and the present paper is the first of a series in which we address the development and 
application of an iterative technique, based upon Newton's method, for this class of problems. 

Previous applications of boundary-fitted co-ordinate techniques for solution of free-surface or 
free-boundary flow problems have in fact been limited to problems involving the motions of 
bubbles or drops in viscous fluids at intermediate Reynolds numbers. The classic problem of 
buoyancy-driven translation of a bubble through a quiescent fluid was solved using an 
orthogonal, boundary-fitted co-ordinate system by Ryskin and Leal,' and with a non-orthogonal 
grid by Christov and V ~ l k o v . ~  Later, the present authors solved for translation of a deformable 
drop7 using a generalization of the orthogonal mapping method of Ryskin and Leal.8 Ryskin and 
Lealg also considered bubble deformation in a steady, uniaxial extensional flow, while Kang and 
Leallo, l1 developed a technique for solution of transient moving-boundary problems. In all of 
these ~tudies ,~~' -"  the numerical technique used was successive approximation (using the 
alternating direction implicit method of Peacemann and Rachford"), with the calculation of 
interface shape and boundary-fitted co-ordinate mapping decoupled from the flow variables. 
Although this method has proven to be versatile and useful for the class of problems considered, 
the decoupled successive approximations can require many iterations to converge, particularly 
when extreme under-relaxation is required to insure stability. Further, these methods are not 
optimal for solution of problems where we expect to find limit points, multiple solutions and 
instabilities (bifurcations) to other solution branches. In such cases it is difficult with the successive 
approximation technique to distinguish between difficulty with the numerics and a true approach 
to a singularity. 

An alternative to the decoupled successive approximation methods of the previous studies is a 
global iteration in which we simultaneously iterate on all of the unknown variables, including the 
flowfield, the boundary shape and the co-ordinate mapping. Such a formulation would seem to be 
ideally suited to using Newton's method, but nothing of this nature has yet been developed for the 
finite difference approach to the solution of free- or moving-boundary problems. On the other 
hand, successful implementation of Newton's method in the context of a finite element 
formulation for free-boundary problems has already been reported,' '*14 and this was seen as a 
further advantage ofqthe finite element approach. In the present work we show that a global 
Newton's scheme can also be applied to the finite difference, boundary-fitted co-ordinate 
technique for the solution of free-boundary flow problems, and we apply the resulting algorithm to 
re-investigate the dynamics of a rising gas bubble in a quiescent fluid. Newton's method is shown 
to approach quadratic convergence even for initial conditions that are far from the final steady- 
state solution. By application of standard techniques for computer-aided analysis of non-linear 
problems, we are able to explore the stability of steady, axisymmetric bubble shapes along the 
solution branch which starts from a sphere for zero Weber number. 

FORMULATION 

We begin by considering the formulation of governing equations and boundary conditions. To be 
concrete, we consider the specific problem of a deformable inviscid gas bubble (a void) that 
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undergoes a steady, buoyancy-driven motion through an outer, quiescent liquid. We do not mean 
to imply by this choice that the basic solution methodology cannot be applied to other free-surface 
or moving-boundary flow problems. On the contrary, the necessary modifications will generally 
be completely transparent, and this is especially true for other problems involving axisymmetric 
motions of gas bubbles or drops where the necessary changes are essentially only the boundary 
conditions in the far-field. The outer liquid is characterized by a constant viscosity p and density p. 
The interface is assumed to be characterized completely by the surface tension y, which is constant. 
As shown in Figure 1, the geometry of the system is conveniently represented in terms of 
cylindrical co-ordinates (z, C T , ~ ) .  We assume that the motion of the drop is rectilinear and thus 
that the shape and flowfield are both axisymmetric; therefore all quantities are independent of 4. It 
is also assumed that both the dispersed and continuous phases are incompressible, and the volume 
of the bubble is therefore constant. 

Governing equations 

To actually solve the governing equations and boundary conditions describing the flow and 
bubble shape, it is necessary to approximate them at discrete points in space, and these points are 
to be determined by generating a boundary-fitted co-ordinate grid. It is intuitive to think of the 
solution as involving a two-step procedure: first a grid is prescribed, and then discrete solutions for 
the flow and shape are found on this grid. However, information regarding the shape of the bubble 
is a boundary condition used in generating the grid, and while it is necessary to have a grid on 
which to discretize the governing equations, we cannot produce a grid until we know the solution 
to these same equations. The resolution of this apparent dilemma is to simultaneously solve the 
equations governing not only the flow and shape, but also those describing the co-ordinate 
mapping. 

Axisymmetry enables us to simplify the mapping problem from construction of a three- 
dimensional grid to a two-dimensional grid. For reasons described el~ewhere,~ we perform an 
inverse conformal mapping of the infinite flow domain to a finite auxiliary domain. We then solve 

Figure I .  Schematic sketch of the problem 
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a pair of Laplace equations to obtain a discrete set z*(& q) and a*(& q), where 5 and q are general 
curvilinear co-ordinate variables. Solution of the covariant Laplace equations provides us with a 
discrete mapping between the finite auxiliary space and a unit square in a computational (c, q) 
space. The absence of any explicit reference to the interface in the governing equations or 
boundary conditions allows us to use the strong constraint method.8 The strong constraint 
method provides freedom to specify the distortion function f ( 5 ,  q). The governing equations for 
the mapping and the form chosen for the distortion function fa re  

where 0 < P I 1 is a parameter used to control the grid density in the q-direction. In equations (1) 
and for the duration of the paper a shorthand notation will be used: partial derivatives of the 
dependent variables with respect to the independent variable 5 will be denoted by the subscript x, 
and partial derivatives of the same variables with respect to q will be denoted by the subscript y. 
These subscripts are used to distinguish derivatives from components: u, = &/aq whereas u,, is the 
component of velocity in the q-direction. 

It is convenient to cast the flow equations in terms of the streamfunction and vorticity rather 
than the primitive variables u, p .  The process for arriving at the final equations is carried out in 
detail el~ewhere,~ but the steps will briefly be reviewed here. First the steady Navier-Stokes and 
continuity equations are non-dimensionalized using the radius a of an undeformed bubble as the 
characteristic length scale, the translation velocity of the bubble U ,  as a characteristic velocity 
and a pressure scale $p V:. The resulting equations contain the Reynolds number Re, which is 
defined as Re = 2paU,/p. The curl of the dimensionless Navier-Stokes equations is taken, and we 
obtain an equation in terms of the vorticity o and velocity u. Note that since this problem is 
axisymmetric, the vorticity vector has only one non-zero component. We then define the 
components of the velocities in the general (5, q) co-ordinate system using the streamfunction $: 

1 a* 
q ah, at; u =-- 1 a* 

% =  ---> ah, all 

and substitute into the velocity-vorticity formulation to obtain 

9 2 l + b  + 0 = 0, 

where 

The scale factors of the co-ordinate system are defined to be 

h: =zf  + gf, h,Z = z,’ + a:, 
and their ratio is the distortion function 

f = h,/h,. 
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When the operators in equations (3) are expanded, we obtain the following: 

f 2% + wyy +f (f, +faxla)% + (a,/o -fY/m, 

f 2 * : ~ + * ~ ~ + f ( f , - f ~ x l ~ ) * : - V ; / f + ~ y l ~ ) * y *  
-(l/cz)( f 20:+ay2)~-4Ref [(firw)x+(ii,w),l=O, (44 

- 3f [a($ f tax ++<of, +fa) + h,2 au = 0. (4b) 
Since $ asymptotically approaches infinite values as a+ co, we have defined a modified 
streamfunction $* = JI --$az( 1 - t3) which is bounded at infinity. With this modified streamfunc- 
tion, we can write the velocity components as 

ii,=h,u,= -*;/a-(l-(3)ay, 

ii,, = hTu, = + (1 - t3)ox-$at2.  

Note that the dependent variables for the mapping appearing in equations (4) are z and a, whereas 
the co-ordinate unknowns to be solved for are z* and a*. Thus, everywhere that z,  a and their 
derivatives appear in the governing equations and boundary conditions, a conformal mapping 
relation must be used to write all of these variables in terms of the auxiliary mapping variables z*, 
a* and their derivatives. 

Boundary conditions 

At infinity we require that there be uniform streaming flow, for which the velocity is constant 
and the flow is irrotational. Additionally, infinity in the physical (z,  a) co-ordinate system 
corresponds to the origin in the finite (z*, a*) co-ordinate system. Thus we arrive at the following 
homogeneous condition at infinity: 

$*, w, z*, a* =O at 5 = 0. (5 )  

The upstream and downstream axes of symmetry are considered to be zero streamlines, and the 
conditions at these boundaries are 

w, I+P, zy*, c*=O at q=O, 1. (6) 

Any mapping satisfying equations (1) will be orthogonal in the interior of the domain; therefore 
the homogeneous Neumann condition on z* insures that the grid is also orthogonal at the 
boundaries q = 0 and q = 1. 

The boundary conditions at the interface t =  1 are more complicated than those described 
above. First there is the kinematic condition, which states that the normal velocity of the interface 
~ ~ ( 1 ,  q)  is zero at steady state. From the relation between the streamfunction and the velocity 
components it is seen that zero normal velocity is equivalent to requiring the streamfunction at 
t =  1 to be independent of position along the interface. That is, the interface corresponds to a 
streamline 

$*=O a t t = 1 .  (7) 

There are two stress balances at the interface, the normal stress balance and the tangential stress 
balance. Since the bubble is assumed to be a void (zero viscosity and density), we find that there is 
zero tangential stress at the interface, and after some manipulation’ the non-dimensional 
tangential stress balance reduces to 

0-21c,,u,,=O at {=1, (8) 
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where K ,  is the principal radius of curvature in the q-direction and is given by 

K,= (zy(-Jyy - zyy(Ty)/ht:. 

7g - - ( lCq+IC+)=O,  W (9) 

Similarly, manipulation of the normal stress balance yields the following non-dimensional form:5 

4 

where the Weber number is W=2paU;/y ,  and K +  is the principal radius of curvature in the 
azimuthal direction such that K+ = -fo,/oh,. The component of the stress tensor appearing in 
equation (9) is 

z<<= - 

and the pressure is 

where A is an as-yet undetermined constant of integration, and the drag coefficient C, is 

Finally, to force the mapping to be orthogonal at the interface, the following boundary 
condition is imposed: 

z,*-a,*/f=O at <=1.  (1 3 )  

Equation (1 3 )  is analogous to the Riemann condition in conformal mapping and is automatically 
satisfied in the interior of the domain, subject to the existence of a solution to equations (1). 

As a final constraint on the system, necessary to close the system of equations and boundary 
conditions above, we require that the bubble be incompressible and thus conserve volume as it 
deforms. This constraint can be conceptually associated with the constant of integration I in the 
expression for pressure, equation (1 1). In fact, in the global iteration scheme described here, I is 
simply treated as one of the unknowns, which is to be determined simultaneously with all of the 
other unknowns, while the condition of constant volume provides one of the many equations that 
are to be solved. The integral equation imposed is 

jol 02(L v ) z , ( l ,  r)dv+Q=Q. (14) 

Algebraic equations 

The unit square in computational ( 4 , ~ )  space is discretized by dividing both the 4- and 
r-direction into N equally spaced nodes, yielding a grid of N 2  total nodes. The nodes in 
the 5-direction will be denoted by the subscript i, such that I l i l N ,  whereas the nodes 
in the q-direction will be represented by the subscriptj, 1 rj s N .  For the results presented in this 
paper, N=61. 

To reduce equations (1) and (4) from differential equations to algebraic equations, it is a simple 
matter of using centred, second-order finite differences. Similarly, partial derivatives appearing in 
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the boundary conditions (8)-( 13) are reduced to algebraic form using finite differences. Normal 
derivatives at the interface 4 = 1 are approximated by second-order, one-sided differences. To 
approximate the integrals appearing in equations (1 l), (12) and (14), Simpson's rule was used for 
equations (1 2) and (1 4), while the trapezoidal rule was used for equation (1 1). The reason for using 
the two different integration schemes is that although Simpson's rule has higher accuracy than the 
trapezoidal rule, it requires that the number of points in the integration be odd-which is true in 
our case when we integrate over the surface from 0 to n since 61 points are used in the 
discretization-but when we integrate over only part of the surface (from 0 to  qj) the number of 
points alternates between odd and even as j varies from 2 to 61. 

The governing equations are approximated at the ( N  -2)' interior grid points, and at the (i,j)th 
node the mapping equations are 

hj C Xj  + E (  f ,  )i jI z,?+ 1 j - 2( 1 + f $  zi";. +Aj CJj - E (  L )i jI zi*- 1 j 

+ [ 1 -~(fy)ij/Jjl z$+  1 + [ 1 + c(&,)ij/Jjl~i";.- 1 =O> ( 1  5 4  

+[l-~(&)ij/hjI~i";.+1 +C1 +~( fy ) i j / .L j l~$ - l=O,  (15b) 
AjLLj+ ~(f,)ijIoi*+ 1j  -2(1 +fi2j)at+XjCLj-&(L)ijI a,?- 1 j 

where E =  h/2 and h is the mesh size; h =  l /(N- 1). Note that the form chosen for the distortion 
function in equation (2) gives 

fx = n( 1 - ficosnq), f ,  = fin2 4 sinnq. 

The equations governing the flow are 

where the coefficients are given by 

and 

Discretization of equations (8), (9), (13) and (14) yields another 3(N- 2)+ 1 algebraic equations, 
for a total of 4(N- 2)' + 3(N - 2) + 1 equations. Correspondingly, there are ( N  - 2)' 
unknowns for $5,  wij, z$ and 05, for a total of 4(N -2)' interior unknowns; at the interface < = 1, 
there are N - 2 unknowns for wNj, z;Gj and agj, and the single unknown 2, for a grand total of 
4(N-2)2+3(N-2)+ 1 unknowns. For the 61 x 61 mesh used in this work, there are 14 102 
equations and unknowns. 
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DETAILS OF THE NUMERICAL SCHEME 

Application of Newton's method to the solution of the system of non-linear algebraic equations 
generated in the previous section is straightforward: the vector set of equations is symbolically 
represcnted by G(x; Re, W)=O, where x is the vector set of unknowns. If we start with a 
'reasonable' initial guess X('), then at the (n + 1)th iteration, or Newton step, the approximation to 
the solution is 

X(fl- l )=~(f l ) ) - (A("))- lG(") (17) 

where A is the Jacobian matrix defined by A=i?G/dx. The difficulty comes in computing the 
elements of A. 

The elements of the Jacobian were computed by analytically differentiating the algebraic 
equations (15) and (16) as well as the discrete forms of the boundary conditions (8), (9), (1 3) and (14) 
with rcspect to all of the unknowns. In finite difference formulations such as this, however, an 
equation evaluated at the (i, j)th node depends only on the unknowns at that node and the node's 
nearest neighbours. Thus the Jacobian is sparsc. The accuracy of the Jacobian elements was 
checked in two different ways. First, the computer algebra package SMP was used to compare the 
analytical form of each Frechet derivative. Secondly, numerical values of the elements during a run 
were computed using the analytic formulae and also by numerical differencing of the algebraic 
equations (1  5 )  and (1 6). 

To achieve a tight band structure in the Jacobian matrix, we order the equations and unknowns 
in alternating groups of N -2, starting at i, j = 2: for each i, in order of appearance, we write N - 2 
equations for I)*, o, z* and o*. After all of the governing equations (1 5 )  and (16) have been written, 
we include the boundary conditions in the following order: normal stress balance, tangential stress 
balance, the orthogonality condition on the mapping, and finally the volume constraint. The band 
structure arising from this ordering is shown in Figure 2. There is a high degree of density in the 

Figure 2. Band structure of the Jacobian matrix 
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normal stress balance owing to the integral terms. In this matrix of order 14102 we have a 
bandwidth of 708. 

Solution of the linear system (17) requires the use of a sparse matrix package that efficiently 
orders and stores the elements of the Jacobian and also provides a fast, accurate solution. We have 
examined four such sparse matrix library packages: SPARSPAK,” SMPAK (Yale), ILUPACK16 
and Harwell MA32. Both SPARSPAK and SMPAK proved unusable because neither makes any 
provision for pivoting, which is crucial for this type of problem. They also assume that the matrix 
is symmetric and positive definite, and this acts to reduce the efficiency of storage and elimination. 
ILUPACK was designed to efficiently solve large sparse unsymmetric linear systems by conjugate 
gradient-type iterative methods; additionally, ILUPACK uses incomplete LU factorization 
extensions to SPARSPAK. There are seven possible conjugate gradient methods for the user to 
choose from. 

1. The ORTHOMIN(K) method of Vinsome,” in which K is an integer denoting the 

2. The minimum residual method” is a simple descent method. 
3. The generalized conjugate residual method GCR(K) is a restarted version of ORTHOMZN. 
4. The generalized minimum residual method GMRES(K)I9 uses orthogonality of the basis 

vectors to construct a solution which minimizes the residual norm over the subspace. 
5. USYMLQ” uses a subspace for computing approximate solution vectors which is built by 

using multiplications of the matrix and its transpose in turn. This method minimizes the 
Euclidean norm of the error over the subspace. 

6. USYMQR is like USYMLQ except that it minimizes the residual norm over the subspace 
rather than the Euclidean norm. 

7. LSPR*l uses conjugate gradients applied to the normal equations. 

We found that GMRES(K) out-performed all of the other six methods in tests run on our 
system. In actuality, only two of the other methods would even work on our problems, 
ORTHOMIN(K) and GCR(K); the other methods either ‘blew up’ or converged to incorrect finite 
solutions. One Newton step, using GMRES(K) as the solver, took 5.1 CPU seconds on a CRAY 
X-MP/24.* This time includes evaluation of the matrix elements and right-hand side, and all calls 
to ILUPACK. One disadvantage of ILUPACK is that it is an in-core matrix solver. Although the 
package efficiently orders and stores the elements of the sparse matrix, the workspace required by 
ILUPACK is nonetheless high-almost 3 3  million words for each problem. This is most of the 
core memory of the X-MP/24, and to use more than half is very expensive (since it effectively takes 
memory away from the second processor). 

The package with which we have had the most success is MA32 from Harwell. MA32 solves 
large sparse systems by the frontal method, optionally using disc storage for the matrix factors; it is 
a direct solver employing partial pivoting. Aside from the obvious strength of being able to solve 
very large problems in a specified and relatively small amount of core storage, MA32 was written 
so that equations can be input by the user in one of two ways: (i) by elements, as is natural in finite 
element calculations, or (ii) by a row at a time, as is natural when using finite differencing. During 
elimination, the number of variables needed in core (or in the ‘front’) at any time is dependent on 
the bandwidth of the matrix, provided that the matrix has some regular pattern structure. MA32 
accepts input by equation, and will commence elimination on a variable when that variable is fully 

dimension of the subspace used for approximation. 

* The CRAY X-MP/24 was located at Boeing Computer Services. 
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summed, that is, the variable is available for use as a pivot in Gaussian elimination when it has 
appeared for the last time and does not occur in future equations. 

We have found that for the mapping, flow and full problems the minimum front size allowable is 
313 x 469. For this front size, the disc space needed to store the UQ decomposition (in double 
precision words) is 3 068 928. The amount of real work space needed by MA32 varies from 250000 
to 500000, depending on the front size and output buffer. All of the tests with MA32 have been 
performed on a CRAY X-MP/48.* Execution times for our cases are approximately 22.5 CPU 
seconds per Newton step. Unfortunately, an SSD (solid state storage device) is not available, so the 
temporary files are created on the local discs. Access to SSD for temporary storage would increase 
the 1/0 speed by a factor of 100-1000. 

The convergence criteria that we have been using for the runs reported below is very simple; we 
require that the magnitudes of the elements of the residual vector G (that is, the vector of 
equations) satisfy the following: 

We have found that reasonable values for these tolerances are p, = lo-* and B2 = 10- lo. Values of 
e, versus Newton iteration for all of the cases presented here are found in Table I. It is apparent 
that the Newton scheme presented here achieves quadrat& convergence. 

One disadvantage of MA32-compared to the other sparse matrix libraries tested-is the 
necessity to give MA32 the locations of the non-zero elements twice, once for the package to 
determine when each variable is fully summed, and again for MA32 to perform the eliminations. 
Additionally, this process must be repeated twice for each Newton step. In other words, in libraries 
like SPARSPAK and ILUPAK, the user must give the package the non-zero indices only when 
the structure of the matrix changes, and for problems such as ours, this means we only have to give 

Table I. The maximum norm e ,  of the residual vector as a function of Newton 
iteration, for all of the results presented in this paper 

em 

Re, W 1 step 2 steps 3 steps 4 steps 

0 5 ,  0.5 
2, 0.5 
2, 2 
10, 1 
10, 3 
10, 8 
50, 4 
50, 5 
50, 6 
50, 8 

3.8 x 
4.1 x 10-3 
2.2 x 10-4 

2.1 x 10-3 

4.2 x 10-3 
5.1 x 10- 3 
4.8 x 10- 3 

2.3 x lo-' 
8.8 x 

2.6 x lo-' 

1.5 x 10-3 
2.0 x 1 0 - 5  

5.0 x 10-4 
8.2 x 10-7 

6.7 x 10-4 
4.4 x 10-5 
5.6 10-5 
5.3 x 10-5 

6.5 x 

5.5 x 10-6 

3.1 x 
28 x lo-'' 
1.1 x 10-14 
2.9 x 10-7 
7.4 x 10-13 

5.2 x 10-7 
6.9 x 10-9 
8.2 x 10-9 

3.6 x 10- l 1  

2.3 x l o -@ 

1.1  x 10-11 
7.2 x 
- 

1.0 x 10-13 
4 3  x 1 0 - 1 5  

6 2  x 1 0 - 1 3  

6.0 x lo-'' 
7.5 x 10-12 
1.2 x 10-11 
4.1 x lo-" 

* The CRAY X-MP/48 is located at the San Diego Supercomputer Center (SDSC). 
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the structure once, at the beginning of the run. However, MA32 loses the index information 
between each solution, so that the index information must be given to MA32 twice for each 
Newton step. Aside from the increased computational cost, this behaviour almost doubles the 
amount of Fortran source code, appreciably increasing the compilation time. Except for this 
inconvenience, MA32 has proved to be a versatile sparse matrix package. 

CONTINUATION 

Continuation can play a vital role in the application of Newton’s method, particularly when the 
solution behaviour changes dramatically with small changes in one or more of the parameters. 
One of the simplest forms of continuation is Euler-Newton continuation,22. 23 where application 
of the chain rule from differential calculus generates a vector initial value problem (IVP). The 
independent variable in this linear IVP is the continuation parameter, and the coefficient matrix of 
the right-hand side is the Jacobian matrix A. The Euler-Newton algorithm breaks down when A is 
singular, that is, at a branch point. Because of this limitation, arc length continuation is used. The 
following is based on the continuation algorithm presented by KubiEek and Marek24 and closely 
parallels the method developed by R h e i n b ~ l d t . ~ ~  We wish to generate a complete dependence 
x(Re) or x( W) which forms a continuous smooth curve in ( M  + 1)-dimensional space 
(xl, x2, . . . ,xM, Re or W). This continuation method gets its name because the arc length s of the 
solution curve is employed as a parameter of the method. First, the residuals are differentiated 
with respect to the arc length s 

if continuation is performed in Re, and 

if Wis considered. With the addition of arc length s into the set of equations, one more constraint 
on the system is needed. This extra condition specifies the normalized length of the curve in 
solution space. Thus we require 

(2y+(zy+. . . +r$y+(=) dRe = 1  

if we are again considering continuation in Re for example. Now, equation (18) forms a set of M 
linear algebraic equations in the M + 1 unknowns dxi/ds, i =  1, . . . ,M + 1, where xM+ =Re. The 
number of unknowns in equation (18) can be reduced by one if a new set of unknowns K~ is 
defined such that 

dxi dxk 
ds ds ’ 
- - - Ki- i = l , 2 , .  . . . , k - l , k + l , .  . . , M + 1 ,  

for some ax,/as # 0, 1 I k I M + 1. Equation (1 8) then reduces to a system of M equations and M 
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unknowns, which can be solved for the I C ~ .  The coefficient matrix of this linear system is 

/ ac,/ax, . . . aGl/ax,+ aG,/axk+, . . . aG,/axM+, \ 
a ~ ~ / a X ~  . . . a ~ ~ / a x , - ,  a ~ , / a X , + ,  . . , a~, /ax ,+ ,  

The value of k was chosen using trial-and-error and was held fixed for the duration of a 
computation. This matrix is, in general, non-singular at limit points, making arc length 
continuation a valuable means of branching through limit points. With the values of x i ,  dx,/ds can 
be computed using equation (20). These equations comprise a set of M + 1 coupled differential 
equations which can be solved by a variety of methods. 

We have tested the arc length continuation algorithm and found that it works well in the regions 
of parameter space considered (moderate Re and W).  Specifically, with the initial guess generated 
using continuation, we were always able to obtain a solution at the new parameter value with 
Newton’s method. 

DISCUSSION 

To demonstrate the performance and accuracy of Newton’s method, we have obtained results at 
Reynolds numbers of 0.5, 2, 10 and 50 for a variety of Weber numbers. The results for Re=0.5, 
W=O.5 may be seen in Figure 3. At these low values of Re and W, deformation is very slight, and 
the flowfield is nearly fore-aft symmetric. (The flow is from left to right around the bubble.) The 
upper figure corresponds to lines of constant vorticity, while the lower figure shows the 

Figure 3. Vorticity lines and streamlines at (R ,  W)=(0.5, 0.5). Flow is left-to-right around the bubble 



FREE-SURFACE FLOW PROBLEMS 1481 

Table 11. Comparison of the present results for the drag coefficient CD with the 
results of Ryskin and Leal and with the low-Re, Wasymptotic results of Taylor 

and Acrivos 

CD 

Re, W Present work Ryskin and Leal’ Taylor and Acrivosfo 

0.5, 0 
0 5 , 0 5  
2, 0 5  
2, 2 
10, 1 
10, 3 
10, 8 
50, 4 
50, 5 
50, 6 
50, 8 

33.6 
34.7 

10.6 
9.62 

2.66 
3.18 
4.02 
1.22 
1.40 
1.65 
2.20 

33.6 
34.7 

10.6 
9.62 

2.67 

4.00 
1.23 

1.64 
2.18 

- 

- 

33.7 
35.1 

streamlines. To obtain this result, the following initial condition was used: 

2; = &COS(Rqj), ail;.=<,sin(nqj), 1 <i ,  j < N ,  

lj*.=o..=o, IJ V l < i , j S N ,  

and 
A= 1. 

Convergence to the solution shown in Figure 3 was reached in four Newton steps. In Table I1 we 
present a comparison of drag coefficients computed in this work with the low-Re, W asymptotic 
analysis of Taylor and Acrivos26 and the earlier numerical work of Ryskin and Leal,5 who used an 
alternating direction implicit technique to compute solutions to this problem. Table I1 also 
summarizes all comparisons made between results of this work and Ryskin and Leal for all values 
of Re and W considered. 

Figures 4 and 5 show results for Re=2 and 10, and 0.55 W 5 8 .  As W increases so does 
deformation, and the bubble forms a dimple on the downstream side at (Re, W ) = ( l O ,  8). The 
initial condition for (Re, W)= 2,0.5) was obtained by taking the solution for the case (05,0*5) and 
performing continuation in Re; The initial guess at (10,0.5) was obtained by starting with the 
solution at (2,0.5). Similarly, the initial guess for (2,2) was found by starting with the solution at 
(2,05) and performing continuation in W. 

Figure 6 shows rksults for Re=50 and W=4, 5,  6 and 8. At this Reynolds number, as 
deformation increases with W, the upstream side of the bubble deforms, essentially to the same 
extent as the downstream side, causing the bubble to become oblate ellipsoidal in shape. An 
attached recirculating wake forms for 4 < W <  5, and the dimensions of this wake grow larger as 
the bubble deformation increases. The presence of an attached eddy is accompanied by a thin 
region of oppositely signed vorticity. 

We have demonstrated with these examples that Newton’s method works well for free-surface 
flow problems when applied to solving the non-linear algebraic equations arising from finite 
difference approximations to the Navier-Stokes equations and their boundary conditions. 
Although the system of equations generated is quite large, they comprise a sparse system when 
linearized and are well suited for solution on large vector machines. 
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Figure 4. Vorticity lines and streamlines at ( R ,  W)=(2, 0.5) and (2,2) 
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Figure 5. Vorticity lines and streamlines at (R ,  W)=( lO ,  l), (10, 3) and (10,s) 
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Figure 6. Vorticity lines and streamlines at (R ,  W)=(SO, 4), (SO, S), (SO, 6) and (SO, 8) 
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